TEST REPORT Product Name : DataHub Model Number : DataHub1000 FCC ID : 2AMEH-DATAHUB Prepared for Address SolaX Power Network Technology (Zhejiang) Co., Ltd.No.288, Shizhu Road, Tonglu Economic Development Zone, Tonglu City, Zhejiang Province 310000, P. R. CHINA Prepared by Address EMTEK (NINGBO) CO., LTD. 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech Zone, Ningbo, Zhejiang, China. Tel: +86-574-27907998 Fax: +86-574-27721538 Report Number : ENB Date(s) of Tests : April ENB2204290281W01101R April 29, 2022 to July 27, 2022 Date of Issue : August 10, 2022 # **TABLE OF CONTENTS** | 1 TI | EST RESULT CERTIFICATION | 3 | |--|--|----------------| | 2 E | UT TECHNICAL DESCRIPTION | 4 | | 3 SI | UMMARY OF TEST RESULT | 5 | | 4 TI | EST METHODOLOGY | 6 | | 4.1
4.2
4.3
4.4 | GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES TEST SOFTWARE | 6
8 | | 5 F | ACILITIES AND ACCREDITATIONS | | | 5.1
5.2 | FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS | 10 | | | EST SYSTEM UNCERTAINTY | | | 7 SI | ETUP OF EQUIPMENT UNDER TEST | | | 7.1
7.2
7.3
7.4
7.5 | RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT | 12
13
14 | | 8 TI | EST REQUIREMENTS | | | 8.1
8.2
8.3
8.4
8.5
8.6 | DTS (6DB) BANDWIDTH | | ## 1 TEST RESULT CERTIFICATION Applicant : SolaX Power Network Technology (Zhejiang) Co., Ltd. Address : No.288, Shizhu Road, Tonglu Economic Development Zone, Tonglu City, Zhejiang Province 310000, P. R. CHINA Manufacturer : SolaX Power Network Technology (Zhejiang) Co., Ltd. Address : No.288, Shizhu Road, Tonglu Economic Development Zone, Tonglu City, Zhejiang Province 310000, P. R. CHINA EUT : DataHub Model Name : DataHub1000 Trademark : SolaX Power #### Measurement Procedure Used: | APPLICABLE STANDARDS | | | | | |---|------|--|--|--| | STANDARD TEST RESULT | | | | | | FCC 47 CFR Part 2, Subpart J
FCC 47 CFR Part 15, Subpart C | PASS | | | | The above equipment was tested by EMTEK (NINGBO) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report. | Date of Test : | April 29, 2022 to July 27, 2022 | |--------------------------------|---------------------------------| | Prepared by : | June Gao/Engineer | | Reviewer : | June Gao/Engineer | | reviewei . | Vinay/Supervisor Tory Wei | | Approved & Authorized Signer : | Tony Wei/Manager | ## 2 EUT TECHNICAL DESCRIPTION | Characteristics | Description | | | |--|--|--|--| | Product | DataHub | | | | Model Number | DataHub1000 | | | | Sample Number | 1# | | | | IEEE 802.11 WLAN
Mode Supported | ⊠802.11b
⊠802.11g
⊠802.11n(20MHz channel bandwidth)
□802.11n(40MHz channel bandwidth) | | | | Data Rate | 802.11 b:1,2,5.5,11Mbps;
802.11 g:6,9,12,18,24,36,48,54Mbps; | | | | Modulation DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/ CCK /16QAM/64QAM for 802.11g/n20; | | | | | Operating Frequency Range □ 2412-2462MHz for 802.11b/g/n(HT20); □ 2422-2452MHz for 802.11n(HT40); | | | | | Number of Channels | ☐ 11 channels for 802.11b/g n(HT20);☐ 7 Channels for 802.11n(HT40); | | | | Transmit Power Max | 14.81 dBm | | | | Smart system | SISO for802.11 b/g/n(HT20)/n(HT40);
□MIMO for802.11n(HT20); | | | | Antenna Type | PCB Antenna | | | | Antenna Gain | 5.0 dBi | | | | Power supply | AC 100-240V, 50/60Hz | | | | AC Adapter -1 | M/N: ABT020120D
Input: AC 100-240V, 50/60Hz, 1.5A
Output: DC 12V, 2A, 24W | | | | M/N: BSG025W-JP1202000G Input: AC 100-240V, 50/60Hz, 0.6 A MAX Output: DC 12V, 2A | | | | | Temperature Range | -20℃~+60℃ | | | | Date of Received | April 29, 2022 | | | Note: for more details, please refer to the User's manual of the EUT. # 3 SUMMARY OF TEST RESULT | FCC Part Clause | Test Parameter | Verdict | Remark | | | | |-----------------|---|---------|--------|--|--|--| | 15.247(a)(2) | DTS (6dB) Bandwidth | PASS | | | | | | 15.247(b)(3) | Maximum Peak Conducted Output Power | PASS | | | | | | 15.247(e) | Maximum Power Spectral Density Level | PASS | | | | | | 15.247(d) | Unwanted Emission Into Non-Restricted | PASS | | | | | | | Frequency Bands | | | | | | | 15.247(d) | Unwanted Emission Into Restricted Frequency | PASS | | | | | | 15.209 | Bands (conducted) | | | | | | | 15.247(d) | Radiated Spurious Emission | PASS | | | | | | 15.209 | | | | | | | | 15.207 | Conducted Emission Test | PASS | | | | | | 15.247(b) | Antenna Application PASS | | | | | | | | NOTE1:N/A (Not Applicable) | | | | | | | | NOTE2: According to FCC OET KDB 558074, the report use radiated | | | | | | | | measurements in the restricted frequency bands. In addition, the radiated | | | | | | | | test is also performed to ensure the emissions emanating from the device | | | | | | | | cabinet also comply with the applicable limits. | | | | | | # RELATED SUBMITTAL(S) / GRANT(S): This submittal(s) (test report) is intended for FCC ID: 2AMEH-DATAHUB filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. ## 4 TEST METHODOLOGY ## 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ## 4.2 MEASUREMENT EQUIPMENT USED ## 4.2.1 Conducted Emission Test Equipment | Equ. No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. Interval | |----------|-------------------|---|-----------|----------------------|---------------|---------------| | ENE-001 | Test Receiver | Rohde & Schwarz | ESCI | 101108 | July 07, 2022 | 1 Year | | ENE-003 | L.I.S.N | Rohde & Schwarz | ENV216 | 101193 | July 07, 2022 | 1 Year | | ENE-004 | L.I.S.N | Schwarzbeck | NSLK 8126 | 8126-462 | July 07, 2022 | 1 Year | | ENE-006 | Pulse Limiter | MTS-systemtechnik | IMP-136 | 2611115-001-0
033 | July 07, 2022 | 1 Year | | ENE-005 | RF Switching unit | Compliance
Direction Systems
Inc. | RSU-M2 | 38400 | July 07, 2022 | 1 Year | ## 4.2.2 Radiated Emission Test Equipment | Equ. No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. Interval | |---------------|------------------------|---------------------------|----------------------|----------------------|-------------------|---------------| | ENE-002 | Spectrum
Analyzer | Rohde & Schwarz | ESCI | 101107 | July 07, 2022 | 1 Year | | ENE-002 | EMI Test
Receiver | Rohde & Schwarz | ESCI | 101107 | July 07, 2022 | 1 Year | | ENE-009 | Pre-Amplifier | CD | PAP-0203 | 22015 | July 07, 2022 | 1 Year | | ENE-010 | Bilog Antenna | Schwarzbeck | VULB9163 | 9163-467 | July 11, 2022 | 2 Year | | ENE-025-
1 | Cable | Huber + Suhner | CBL3-NN-
0.5M | 101216-21405
00-2 | July 07, 2022 | 1 Year | | ENE-025-
2 | Cable | Huber + Suhner | CBL3-NN-
3.0M | 101216-21430
00-2 | July 07, 2022 | 1 Year | | ENE-025-
3 | Cable | Huber + Suhner | CBL3-NN-9
.0M | 101216-21490
00 | July 07, 2022 | 1 Year | | ENE-170 | EXA Signal
Analyzer | KEYSIGHT | N9010B | MY60242457 | March 01,
2022 | 1 Year | | ENE-090 | Pre-Amplifier | Connphy
Microwave Inc. | GLN-1G40
G-4165-K | 0319104 | Nov 22, 2021 | 1 Year | | ENE-060 | Horn Antenna | Schwarzbeck | BBHA 9120 | 9120D-707 | April 13, 2021 | 2 Year | | ENE-101-
1 | Cable | SMAMSMAM | A50-0.5M | N/A | July 07, 2022 | 1 Year | | ENE-101-
2 | Cable | SMAMSMAM | A50-3M | N/A | July 07, 2022 | 1 Year | | ENE-101-
4 | Cable | SMAMSMAM | A50-6M | N/A | July 07, 2022 | 1 Year | # 4.2.3 Radio Frequency Test Equipment | Equ. No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. Interval | |----------|------------------------|--------------|-----------|------------|-------------------|---------------| | ENE-170 | EXA Signal
Analyzer | KEYSIGHT | N9010B | MY60242457 | March 01,
2022 | 1 Year | Remark: Each piece of equipment is scheduled for calibration once a year. #### 4.3 DESCRIPTION OF TEST MODES The EUT has been tested under its typical operating condition. The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application. The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements. Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report. Those data rates (\boxtimes 802.11b:1 Mbps; \boxtimes 802.11g: 6 Mbps; \boxtimes 802.11n(HT20): MCS0; \square 802.11n(HT40): MCS0) were used for all test. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed. Frequency and Channel list for 802.11b/g/n (HT20): | 23. requeste) and entailmenter estation (in 120). | | | | | | | |
---|-----------|----------|-----------|----------|-----------|--|--| | Channel | Frequency | Channel | Frequency | Channel | Frequency | | | | | (MHz) | Chamilei | (MHz) | Chamilei | (MHz) | | | | 1 | 2412 | 6 | 2437 | 11 | 2462 | | | | 2 | 2417 | 7 | 2442 | | | | | | 3 | 2422 | 8 | 2447 | | | | | | 4 | 2427 | 9 | 2452 | | | | | | 5 | 2432 | 10 | 2457 | | | | | Frequency and Channel list for 802.11n (HT40): | Channal | Frequency | Channal | Frequency | Channal | Frequency | |---------|-----------|---------|-----------|---------|-----------| | Channel | (MHz) | Channel | (MHz) | Channel | (MHz) | | 3 | 2422 | 6 | 2437 | 9 | 2452 | | 4 | 2427 | 7 | 2442 | | | | 5 | 2432 | 8 | 2447 | | | Test Frequency and Channel for 802.11b/g/n (HT20): | Lowest Frequency | | Middle Frequency | | Highest Frequency | | |------------------|--------------------|------------------|--------------------|-------------------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 1 | 2412 | 6 | 2437 | 11 | 2462 | ☐ Test Frequency and Channel for 802.11n (HT40): | Lowest Frequency | | Middle F | requency | y Highest Frequency | | |------------------|--------------------|----------|--------------------|---------------------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 3 | 2422 | 6 | 2437 | 9 | 2452 | ## 4.4 TEST SOFTWARE | Item | Software | |--------------------|------------------------| | Radiated Emission: | EMC (Ver. EMEC-3A1) | | Conducted Emission | EZ-EMC (Ver. CON-03A1) | ## 5 FACILITIES AND ACCREDITATIONS ## 5.1 FACILITIES All measurement facilities used to collect the measurement data are located at 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech Zone, Ningbo, Zhejiang, China. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 32. #### 5.2 LABORATORY ACCREDITATIONS AND LISTINGS Site Description EMC Lab. : Accredited by CNAS The Certificate Registration Number is L6666. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2018 (identical to ISO/IEC 17025:2017) **Accredited by FCC** Designation Number: CN1302 Test Firm Registration Number: 436491 Accredited by A2LA The certificate is valid until May 31, 2023 The Certificate Number is 4321.03. **Accredited by Industry Canada** The Certificate Registration Number is CN0114 Company Number: 9469A Name of Firm : EMTEK (NINGBO) CO., LTD. Site Location : 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech Zone, Ningbo, Zhejiang, China. ## **6 TEST SYSTEM UNCERTAINTY** The following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Parameter | Uncertainty | | | |--------------------------------|-------------|--|--| | Radio Frequency | ± 1x10^-5 | | | | Maximum Peak Output Power Test | ± 1.0 dB | | | | Conducted Emissions Test | ± 2.0 dB | | | | Radiated Emission Test | ± 2.0 dB | | | | Power Density | ± 2.0 dB | | | | Occupied Bandwidth Test | ± 1.0 dB | | | | Band Edge Test | ± 3 dB | | | | All emission, radiated | ± 3 dB | | | | Antenna Port Emission | ± 3 dB | | | | Temperature | ± 0.5 °C | | | | Humidity | ± 3 % | | | Measurement Uncertainty for a level of Confidence of 95% ## 7 SETUP OF EQUIPMENT UNDER TEST ## 7.1 RADIO FREQUENCY TEST SETUP 1 The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements. #### 7.2 RADIO FREQUENCY TEST SETUP 2 The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22. #### Below 30MHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT. #### 30MHz-1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). ## Above 1GHz: The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). ## (a) Radiated Emission Test Set-Up, Frequency Below 30MHz ## (b)Radiated Emission Test Set-Up, Frequency Below 1000MHz ## (c) Radiated Emission Test Set-Up, Frequency above 1000MHz ## 7.3 CONDUCTED EMISSION TEST SETUP The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN. Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. ## 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM ## 7.5 SUPPORT EQUIPMENT | EUT Cable List and Details | | | | | | | |----------------------------|------------|---------------------|------------------------|--|--|--| | Cable Description | Length (m) | Shielded/Unshielded | With / Without Ferrite | | | | | 1 | / | 1 | / | | | | | Auxiliary Cable List and Details | | | | | | | |---|---|---|---|--|--|--| | Cable Description Length (m) Shielded/Unshielded With / Without Fer | | | | | | | | / | 1 | 1 | 1 | | | | | Auxiliary Equipment List and Details | | | | | | |--------------------------------------|--------------|-------|---------------|--|--| | Description | Manufacturer | Model | Serial Number | | | | Computer | Lenovo | 1 | / | | | #### Notes: - 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. - 3. Unless otherwise denoted as EUT in <code>『Remark』</code> column, device(s) used in tested system is a support equipment ## **8 TEST REQUIREMENTS** ## 8.1 DTS (6DB) BANDWIDTH #### 8.1.1 Applicable Standard According to FCC Part15.247 (a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 #### 8.1.2 Conformance Limit The minimum -6 dB bandwidth shall be at least 500 kHz. #### 8.1.3 Test Configuration Test according to clause 7.1 radio frequency test setup 1 ## 8.1.4 Test Procedure The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously Set RBW = 100 kHz. Set the video bandwidth (VBW) =300kHz. Set Span=2 times OBW Set Detector = Peak. Set Trace mode = max hold. Set Sweep = auto couple. Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report. #### 8.1.5 Test Results | Temperature: | 23° C | | |--------------------|-----------|--| | Relative Humidity: | 56% | | | ATM Pressure: | 1011 mbar | | | Operation
Mode | Channel
Number | Channel Frequency
(MHz) | Measurement
Bandwidth (MHz) | Limit
(kHz) | Verdict | |-------------------|-------------------|----------------------------|--------------------------------|----------------|---------| | | 1 | 2412 | 9.148 | >500 | PASS | | 802.11b | 6 | 2437 | 9.151 | >500 | PASS | | | 11 | 2462 | 9.139 | >500 | PASS | | 802.11g | 1 | 2412 | 16.034 | >500 | PASS | | | 6 | 2437 | 15.724 | >500 | PASS | | | 11 | 2462 | 16.090 | >500 | PASS | | 802.11n
(HT20) | 1 | 2412 | 17.154 | >500 | PASS | | | 6 | 2437 | 16.880 | >500 | PASS | | | 11 | 2462 | 16.967 | >500 | PASS | ## 8.2 MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER ### 8.2.1 Applicable Standard According to FCC Part15.247 (b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 #### 8.2.2 Conformance Limit The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt
(30dBm). ## 8.2.3 Test Configuration Test according to clause 7.1 radio frequency test setup 1 #### 8.2.4 Test Procedure - a) Set span to at least 1.5 times the OBW. - b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz. - c) Set VBW \geq 3 x RBW. - d) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.) - e) Sweep time = auto. - f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. - g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run". - h) Trace average at least 100 traces in power averaging (i.e., RMS) mode. - i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. #### 8.2.5 Test Results | Temperature: | 23° C | |--------------------|-----------| | Relative Humidity: | 56% | | ATM Pressure: | 1011 mbar | | Operation
Mode | Channel
Number | Channel
Frequency
(MHz) | Measurement
Level (dBm) | Limit
(dBm) | Verdict | |-------------------|-------------------|-------------------------------|----------------------------|----------------|---------| | | 1 | 2412 | 14.81 | 30 | PASS | | 802.11b | 6 | 2437 | 14.63 | 30 | PASS | | | 11 | 2462 | 14.13 | 30 | PASS | | | 1 | 2412 | 12.90 | 30 | PASS | | 802.11g | 6 | 2437 | 12.60 | 30 | PASS | | | 11 | 2462 | 12.28 | 30 | PASS | | 802.11n
(HT20) | 1 | 2412 | 12.22 | 30 | PASS | | | 6 | 2437 | 11.83 | 30 | PASS | | | 11 | 2462 | 11.32 | 30 | PASS | # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11b Channel 1: 2412MHz #### Test Model ## MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11b Channel 6: 2437MHz # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11b #### Test Model # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11g Channel 1: 2412MHz # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11g Channel 6: 2437MHz #### Test Model # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11g Channel 11: 2462MHz # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11n(HT20) #### Test Model # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11n(HT20) # MAXIMUM CONDUCTED(AVERAGE) OUTPUT POWER 802.11n(HT20) #### 8.3 MAXIMUM POWER SPECTRAL DENSITY ## 8.3.1 Applicable Standard According to FCC Part15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 #### 8.3.2 Conformance Limit The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. ## 8.3.3 Test Configuration Test according to clause 7.1 radio frequency test setup 1 #### 8.3.4 Test Procedure This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to:10 kHz. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6) #### 8.3.5 Test Results | Temperature: | 23° C | |--------------------|-----------| | Relative Humidity: | 56% | | ATM Pressure: | 1011 mbar | | Operation
Mode | Channel
Number | Channel
Frequency
(MHz) | Measurement
Level (dBm/3kHz) | Limit
(dBm/3kHz) | Verdict | |-------------------|-------------------|-------------------------------|---------------------------------|---------------------|---------| | | 1 | 2412 | -6.449 | 8 | PASS | | 802.11b | 6 | 2437 | -7.432 | 8 | PASS | | | 11 | 2462 | -7.871 | 8 | PASS | | | 1 | 2412 | -11.470 | 8 | PASS | | 802.11g | 6 | 2437 | -11.660 | 8 | PASS | | | 11 | 2462 | -10.430 | 8 | PASS | | 802.11n
(HT20) | 1 | 2412 | -11.760 | 8 | PASS | | | 6 | 2437 | -11.560 | 8 | PASS | | | 11 | 2462 | -12.800 | 8 | PASS | #### 8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS #### 8.4.1 Applicable Standard According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 #### 8.4.2 Conformance Limit According to FCC Part 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. ## 8.4.3 Test Configuration Test according to clause 7.1 radio frequency test setup 1 #### 8.4.4 Test Procedure The transmitter output (antenna port) was connected to the spectrum analyzer #### ■ Reference level measurement Establish a reference level by using the following procedure: Set instrument center frequency to DTS channel center frequency. Set the span to ≥ 1.5 times the DTS bandwidth. Set the RBW = 100 kHz. Set the VBW \geq 3 x RBW. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum PSD level. Note that the channel found to contain the maximum PSD level can be used to establish the reference level. #### **■** Emission level measurement Set the center frequency and span to encompass frequency range to be measured. Set the RBW = 100 kHz. Set the VBW =300 kHz. Set Detector = peak Sweep time = auto couple. Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit. ## 8.4.5 Test Results All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below: Test Model # Unwanted Emissions In Non-Restricted Frequency Bands Test Model 802.11b Channel 6: 2437MH # PSD(Power Spectral Density) Test Model 802.11b Channel 11: 2462MHz # Unwanted Emissions In Non-Restricted Frequency Bands Test Model 802.11b Channel 11: 2462MH #### 8.5 RADIATED SPURIOUS EMISSION #### 8.5.1 Applicable Standard According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02 #### 8.5.2 Conformance Limit According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands | According to FCC Part 15.205, Restricted bands | | | | | | | | | |--|---------------------|---------------|-------------|--|--|--|--|--| | MHz | MHz | MHz | GHz | | | | | | | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | | | | | | 10.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | | | | | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | | | | | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | | | | | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | | | | | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | | | | | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | | | | | | 6.26775-6.26825 | 123-138 | 2200-2300 | 14.47-14.5 | | | | | | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | | | | | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | | | | | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | | | | | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | | | | | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | | | | | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | | | | | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (2) | | | | | | | 13.36-13.41 | | | | | | | | | According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table | Restricted
Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement
Distance | |------------------------------|-----------------------|-------------------------|-------------------------| | 0.009-0.490 | 2400/F(KHz) | 20 log (uV/m) | 300 | | 0.490-1.705 | 24000/F(KHz) | 20 log (uV/m) | 30 | | 1.705-30 | 30 | 29.5 | 30 | | 30-88 | 100 | 40 | 3 | | 88-216 | 150 | 43.5 | 3 | | 216-960 | 200 | 46 | 3 | | Above 960 | 500 | 54 | 3 | #### 8.5.3 Test Configuration Test according to clause 7.2 radio frequency test setup 2 #### 8.5.4 Test Procedure This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following
spectrum analyzer settings: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f < 150KHz(9KHz to 150KHz), 9KHz for f < 30MHz(150KHz to 30KHz) VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data. Repeat above procedures until all frequency measured was complete. #### 8.5.5 Test Results | Temperature: | 22.5° C | |--------------------|-----------| | Relative Humidity: | 45% | | ATM Pressure: | 1011 mbar | ■ Spurious Emission below 30MHz(9KHz to 30MHz) | Freq. Ant.Pol. | | | Emission
Level(dBuV/m) | | Limit 3m(dBuV/m) | | Over(dB) | | |----------------|-----|------|---------------------------|----|------------------|----|----------|--| | (MHz) | H/V | PK ` | ÁV | PK | AV | PK | AV | | | | | - | | | | | | | Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor - Spurious Emission Above 1GHz(1GHz to 25GHz) - All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11g recorded was report as below: Adapter: ABT020120D Test mode: 802.11 g Frequency: Channel 1: 2412MHz **Emission** Ant.Pol. Limit 3m(dBuV/m) Over(dB) Freq. Level(dBuV/m) (MHz) H/V PK ΑV PK PK ΑV AV4829.822 53.81 39.76 74.00 54.00 -20.19-14.24 V 42.57 9417.342 56.43 74.00 54.00 -17.57 -11.43 11139.38 V 59.84 45.89 74.00 54.00 -14.16 -8.11 4829.822 Н 37.22 74.00 54.00 -23.47 -16.78 50.53 7171.799 Н 41.67 74.00 54.00 -19.85 -12.33 54.15 -7.03 11098.05 Н 46.97 74.00 54.00 -13.51 60.49 | Test mod | e: 802. | 11 g | Frequ | ency: | Channe | el 6: 2437MHz | <u>z</u> | |----------|--------------|-----------------|-----------------|----------|----------|---------------|----------| | Freq. | Ant.Po
I. | Emis
Level(d | ssion
BuV/m) | Limit 3m | (dBuV/m) | Ove | er(dB) | | (MHz) | H/V | PK | AV | PK | AV | PK | AV | | 4884.927 | V | 53.02 | 39.46 | 74.00 | 54.00 | -20.98 | -14.54 | | 6358.995 | V | 53.30 | 41.24 | 74.00 | 54.00 | -20.70 | -12.76 | | 10409.23 | V | 58.95 | 43.76 | 74.00 | 54.00 | -15.05 | -10.24 | | 6730.956 | Н | 54.15 | 41.46 | 74.00 | 54.00 | -19.85 | -12.54 | | 11318.47 | Н | 60.29 | 47.58 | 74.00 | 54.00 | -13.71 | -6.42 | | 13770.66 | Н | 63.27 | 49.77 | 74.00 | 54.00 | -10.73 | -4.23 | | Test mode: | ode: 802.11 g | | Frequ | Frequency: Channe | | el 11: 2462MHz | | |------------|---------------|-------|-------------------|-------------------|----------|----------------|--------| | Freq. | Ant.Pol. | | ission
dBuV/m) | Limit 3m | (dBuV/m) | Ove | er(dB) | | (MHz) | H/V | PK | AV | PK | AV | PK | AV | | 4926.256 | V | 52.46 | 39.78 | 74.00 | 54.00 | -21.54 | -14.22 | | 7474.878 | V | 54.55 | 41.56 | 74.00 | 54.00 | -19.45 | -12.44 | | 10850.08 | V | 60.61 | 45.79 | 74.00 | 54.00 | -13.39 | -8.21 | | 7943.274 | Н | 54.87 | 41.55 | 74.00 | 54.00 | -19.13 | -12.45 | | 10877.63 | Н | 60.32 | 43.73 | 74.00 | 54.00 | -13.68 | -10.27 | | 14335.49 | Н | 64.87 | 50.14 | 74.00 | 54.00 | -9.13 | -3.86 | Adapter: BSG025W-JP1202000G Test mode: 802.11 g Frequency: Channel 1: 2412MHz **Emission** Frea. Ant.Pol. Limit 3m(dBuV/m) Over(dB) Level(dBuV/m) (MHz) H/V PK PK ΑV PΚ ΑV ΑV 4829.822 V 51.81 38.46 74.00 54.00 -22.19 -15.54 11042.95 V 54.31 74.00 54.00 -19.69 -12.42 41.58 14597.24 ٧ 57.76 43.97 74.00 54.00 -16.24 -10.03 74.00 5601.297 Η 50.57 35.77 54.00 -23.43 -18.23 74.00 7764.181 Η 52.41 40.13 54.00 -21.59 -13.87 11304.70 74.00 Η 54.60 41.97 54.00 -19.40 -12.03 | Test mode: 802.11 g | | 11 g | Frequency: Char | | Channe | nel 6: 2437MHz | | | |---------------------|--------------|---------------------------|-----------------|-------------------|--------|----------------|--------|--------| | Freq. | Ant.Po
I. | Emission
Level(dBuV/m) | | I LIMIT AMICIBILY | | (dBuV/m) | Ove | er(dB) | | (MHz) | H/V | PK | AV | PK | AV | PK | AV | | | 4884.927 | V | 50.52 | 38.67 | 74.00 | 54.00 | -23.48 | -15.33 | | | 7226.904 | V | 51.82 | 39.64 | 74.00 | 54.00 | -22.18 | -14.36 | | | 10850.08 | V | 55.90 | 41.97 | 74.00 | 54.00 | -18.10 | -12.03 | | | 5518.639 | Н | 50.03 | 36.58 | 74.00 | 54.00 | -23.97 | -17.42 | | | 8563.209 | Н | 52.50 | 40.99 | 74.00 | 54.00 | -21.50 | -13.01 | | | 11318.47 | H | 54.29 | 41.63 | 74.00 | 54.00 | -19.71 | -12.37 | | | Test mode: | est mode: 802.11 g | | Frequ | Frequency: Channe | | l 11: 2462MHz | | |----------------|--------------------|-------|------------------|-------------------|----------|---------------|--------| | Freq.
(MHz) | Ant.Pol. | | ssion
dBuV/m) | Limit 3m | (dBuV/m) | Ove | er(dB) | | (IVITZ) | H/V | PK | AV | PK | AV | PK | AV | | 9527.553 | V | 53.53 | 38.97 | 74.00 | 54.00 | -20.47 | -15.03 | | 11359.80 | V | 55.09 | 43.85 | 74.00 | 54.00 | -18.91 | -10.15 | | 14239.06 | V | 58.21 | 45.79 | 74.00 | 54.00 | -15.79 | -8.21 | | 5656.402 | Н | 49.31 | 36.77 | 74.00 | 54.00 | -24.69 | -17.23 | | 7185.575 | Н | 51.63 | 39.79 | 74.00 | 54.00 | -22.37 | -14.21 | | 10877.63 | Н | 54.82 | 42.68 | 74.00 | 54.00 | -19.18 | -11.32 | Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz). - (2) Emission Level= Reading Level+Correct Factor. - (3) Correct Factor= Ant_F + Cab_L Preamp - (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. #### ■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11g recorded was report as below: Adapter: ABT020120D Test mode: 802.11 g Frequency: Channel 1: 2412MHz | Frequency
(MHz) | Polarity | PK(dBuV/m)
(VBW=3MHz) | Limit 3m
(dBuV/m) | AV(dBuV/m)
(VBW=10Hz) | Limit 3m
(dBuV/m) | |--------------------|----------|--------------------------|----------------------|--------------------------|----------------------| | 2384.100 | Н | 50.08 | 74.00 | 38.97 | 54.00 | | 2386.045 | V | 55.98 | 74.00 | 43.26 | 54.00 | Test mode: 802.11 g Frequency: Channel 11: 2462MHz | Frequency
(MHz) | Polarity | PK(dBuV/m)
(VBW=3MHz) | Limit 3m
(dBuV/m) | AV(dBuV/m)
(VBW=10Hz) | Limit 3m
(dBuV/m) | |--------------------|----------|--------------------------|----------------------|--------------------------|----------------------| | 2483.540 | Н | 61.42 | 74.00 | 48.76 | 54.00 | | 2483.593 | V | 62.14 | 74.00 | 49.89 | 54.00 | Adapter: BSG025W-JP1202000G Test mode: 802.11 g Frequency: Channel 1: 2412MHz | Frequency
(MHz) | Polarity | PK(dBuV/m)
(VBW=3MHz) | Limit 3m
(dBuV/m) | AV(dBuV/m)
(VBW=10Hz) | Limit 3m
(dBuV/m) | |--------------------|----------|--------------------------|----------------------|--------------------------|----------------------| | 2373.339 | Н | 50.08 | 74.00 | 38.15 | 54.00 | | 2389.741 | V | 53.69 | 74.00 | 41.30 | 54.00 | Test mode: 802.11 g Frequency: Channel 11: 2462MHz | Frequency
(MHz) | Polarity | PK(dBuV/m)
(VBW=3MHz) | Limit 3m
(dBuV/m) | AV(dBuV/m)
(VBW=10Hz) | Limit 3m
(dBuV/m) | |--------------------|----------|--------------------------|----------------------|--------------------------|----------------------| | 2483.540 | Н | 57.42 | 74.00 | 43.64 | 54.00 | | 2483.500 | V | 59.00 | 74.00 | 44.89 | 54.00 | Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz). - (2) Emission Level= Reading Level+Correct Factor +Cable Loss. - (3) Correct Factor= Ant_F + Cab_L Preamp - (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. Adapter: ABT020120D 2334.00 2342.00 2310.000 2318.00 2326.00 (MHz) 2366.00 2374.00 2358.00 2382.00 2390.00 Site Radiated Emission 3m #1 Polarization: Horizontal Temperature: Adapter: BSG025W-JP1202000G - Spurious Emission below 1GHz (30MHz to 1GHz) - All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11g recorded was report as below: Limit: FCC Part15 Class B 3M Radiation Polarization: Vertical Power: AC 120V/60Hz Temperature: Humidity: 55 % Mode:TX 2412 MHz | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 52.5752 | 53.52 | -21.02 | 32.50 | 40.00 | -7.50 | QP | | | | | 2 | ļ | 77.0503 | 64.20 | -27.40 | 36.80 | 40.00 | -3.20 | QP | | | | | 3 |
* | 85.8984 | 64.37 | -26.47 | 37.90 | 40.00 | -2.10 | QP | | | | | 4 | | 162.6105 | 57.28 | -26.98 | 30.30 | 43.50 | -13.20 | QP | | | | | 5 | | 350.4766 | 54.07 | -19.57 | 34.50 | 46.00 | -11.50 | QP | | | | | 6 | | 776.8777 | 45.86 | -9.66 | 36.20 | 46.00 | -9.80 | QP | | | | 55 % Humidity: Limit: FCC Part15 Class B 3M Radiation Mode: TX 2412 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 85.8983 | 58.97 | -26.47 | 32.50 | 40.00 | -7.50 | QP | | | | | 2 | | 162.6105 | 59.38 | -26.98 | 32.40 | 43.50 | -11.10 | QP | | | | | 3 | | 277.0935 | 57.43 | -20.63 | 36.80 | 46.00 | -9.20 | QP | | | | | 4 | ļ | 355.4273 | 60.50 | -19.50 | 41.00 | 46.00 | -5.00 | QP | | | | | 5 | ļ | 451.1349 | 58.63 | -18.33 | 40.30 | 46.00 | -5.70 | QP | | | | | 6 | * | 776.8778 | 51.56 | -9.66 | 41.90 | 46.00 | -4.10 | QP | | | | Mode:TX 2437 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|-------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | ļ | 52.5752 | 55.52 | -21.02 | 34.50 | 40.00 | -5.50 | QP | | | | | 2 | ļ | 74.3953 | 63.20 | -27.00 | 36.20 | 40.00 | -3.80 | QP | | | | | 3 | İ | 77.0502 | 63.90 | -27.40 | 36.50 | 40.00 | -3.50 | QP | | | | | 4 | * | 85.5973 | 63.20 | -26.60 | 36.60 | 40.00 | -3.40 | QP | | | | | 5 | | 125.0065 | 62.16 | -25.46 | 36.70 | 43.50 | -6.80 | QP | | | | | 6 | | 162.6105 | 62.38 | -26.98 | 35.40 | 43.50 | -8.10 | QP | | | | Limit: FCC Part15 Class B 3M Radiation Mode:TX 2437 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 85.8983 | 61.47 | -26.47 | 35.00 | 40.00 | -5.00 | QP | | | | | 2 | | 162.6105 | 63.98 | -26.98 | 37.00 | 43.50 | -6.50 | QP | | | | | 3 | | 250.3009 | 56.69 | -22.79 | 33.90 | 46.00 | -12.10 | QP | | | | | 4 | | 277.0935 | 57.03 | -20.63 | 36.40 | 46.00 | -9.60 | QP | | | | | 5 | | 369.4045 | 56.84 | -18.84 | 38.00 | 46.00 | -8.00 | QP | | | | | 6 | | 451.1349 | 56.93 | -18.33 | 38.60 | 46.00 | -7.40 | QP | | | | 55 % Humidity: Power: AC 120V/60Hz Limit: FCC Part15 Class B 3M Radiation Mode:TX 2462 MHz | No. | Mk. | | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|-------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 52.5752 | 53.62 | -21.02 | 32.60 | 40.00 | -7.40 | QP | | | | | 2 | ļ | 77.0502 | 65.30 | -27.40 | 37.90 | 40.00 | -2.10 | QP | | | | | 3 | * | 79.2425 | 65.60 | -27.60 | 38.00 | 40.00 | -2.00 | QP | | | | | 4 | İ | 125.0065 | 63.56 | -25.46 | 38.10 | 43.50 | -5.40 | QP | | | | | 5 | | 162.6105 | 63.78 | -26.98 | 36.80 | 43.50 | -6.70 | QP | | | | | 6 | | 375.9384 | 55.31 | -18.41 | 36.90 | 46.00 | -9.10 | QP | | | | Limit: FCC Part15 Class B 3M Radiation Mode:TX 2462 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|-------|----------|-------------------|-----------------|---------| | | | MHz | dBu∨ | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 81.2116 | 61.18 | -27.48 | 33.70 | 40.00 | -6.30 | QP | | | | | 2 | * | 85.8983 | 61.47 | -26.47 | 35.00 | 40.00 | -5.00 | QP | | | | | 3 | | 155.3642 | 64.41 | -27.01 | 37.40 | 43.50 | -6.10 | QP | | | | | 4 | İ | 162.6105 | 64.78 | -26.98 | 37.80 | 43.50 | -5.70 | QP | | | | | 5 | | 366.8231 | 57.59 | -18.99 | 38.60 | 46.00 | -7.40 | QP | | | | | 6 | | 776.8777 | 47.86 | -9.66 | 38.20 | 46.00 | -7.80 | QP | | | | # Adapter: BSG025W-JP1202000G Mode:TX 2412 MHz | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 52.5752 | 53.02 | -21.02 | 32.00 | 40.00 | -8.00 | QP | | | | | 2 | * | 77.0502 | 62.20 | -27.40 | 34.80 | 40.00 | -5.20 | QP | | | | | 3 | | 162.6105 | 58.58 | -26.98 | 31.60 | 43.50 | -11.90 | QP | | | | | 4 | ; | 350.4766 | 54.57 | -19.57 | 35.00 | 46.00 | -11.00 | QP | | | | | 5 | | 776.8777 | 44.36 | -9.66 | 34.70 | 46.00 | -11.30 | QP | | | | Mode:TX 2412 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 85.8983 | 58.47 | -26.47 | 32.00 | 40.00 | -8.00 | QP | | | | | 2 | | 162.6105 | 60.48 | -26.98 | 33.50 | 43.50 | -10.00 | QP | | | | | 3 | | 277.0935 | 57.43 | -20.63 | 36.80 | 46.00 | -9.20 | QP | | | | | 4 | | 355.4272 | 56.20 | -19.50 | 36.70 | 46.00 | -9.30 | QP | | | | | 5 | | 387.9917 | 49.12 | -18.12 | 31.00 | 46.00 | -15.00 | QP | | | | | 6 | | 776.8777 | 44.26 | -9.66 | 34.60 | 46.00 | -11.40 | QP | | | | Site Radiated Emission 3m #1 Polarization: Vertical Temperature: 24 Mode:TX 2437 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 52.5752 | 54.02 | -21.02 | 33.00 | 40.00 | -7.00 | QP | | | | | 2 | * | 77.0502 | 61.70 | -27.40 | 34.30 | 40.00 | -5.70 | QP | | | | | 3 | | 162.6105 | 64.08 | -26.98 | 37.10 | 43.50 | -6.40 | QP | | | | | 4 | | 350.4766 | 54.07 | -19.57 | 34.50 | 46.00 | -11.50 | QP | | | | | 5 | | 451.1349 | 50.73 | -18.33 | 32.40 | 46.00 | -13.60 | QP | | | | | 6 | | 721.7258 | 46.07 | -11.67 | 34.40 | 46.00 | -11.60 | QP | | | | Mode:TX 2437 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 55.2207 | 47.01 | -21.31 | 25.70 | 40.00 | -14.30 | QP | | | | | 2 | | 86.2000 | 55.85 | -26.35 | 29.50 | 40.00 | -10.50 | QP | | | | | 3 | | 114.1136 | 55.28 | -23.98 | 31.30 | 43.50 | -12.20 | QP | | | | | 4 | | 162.6105 | 59.48 | -26.98 | 32.50 | 43.50 | -11.00 | QP | | | | | 5 | | 277.0935 | 55.93 | -20.63 | 35.30 | 46.00 | -10.70 | QP | | | | | 6 | * | 704.2259 | 51.03 | -11.93 | 39.10 | 46.00 | -6.90 | QP | | | | Mode:TX 2462 MHz | No. Mi | k. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |--------|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | 52.5752 | 54.02 | -21.02 | 33.00 | 40.00 | -7.00 | QP | | | | | 2 * | 77.0502 | 62.70 | -27.40 | 35.30 | 40.00 | -4.70 | QP | | | | | 3 | 125.0065 | 59.56 | -25.46 | 34.10 | 43.50 | -9.40 | QP | | | | | 4 | 162.6105 | 60.58 | -26.98 | 33.60 | 43.50 | -9.90 | QP | | | | | 5 | 350.4766 | 56.07 | -19.57 | 36.50 | 46.00 | -9.50 | QP | | | | | 6 | 451.1349 | 50.23 | -18.33 | 31.90 | 46.00 | -14.10 | QP | | | | Site Radiated Emission 3m #1 Polarization: Horizontal Temperature: 24 Mode:TX 2462 MHz | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 81.2116 | 60.58 | -27.48 | 33.10 | 40.00 | -6.90 | QP | | | | | 2 | | 111.3468 | 55.15 | -23.55 | 31.60 | 43.50 | -11.90 | QP | | | | | 3 | | 155.3642 | 61.81 | -27.01 | 34.80 | 43.50 | -8.70 | QP | | | | | 4 | | 345.5951 | 50.05 | -19.25 | 30.80 | 46.00 | -15.20 | QP | | | | | 5 | | 701.7607 | 49.34 | -12.04 | 37.30 | 46.00 | -8.70 | QP | | | | | 6 | | 900.1471 | 41.88 | -8.08 | 33.80 | 46.00 | -12.20 | QP | | | | #### 8.6 CONDUCTED EMISSIONS TEST #### 8.6.1 Applicable Standard According to FCC Part 15.207(a) #### 8.6.2 Conformance Limit #### Conducted Emission Limit | Frequency(MHz) | Quasi-peak | Average | |----------------|------------|---------| | 0.15-0.5 | 66-56 | 56-46 | | 0.5-5.0 | 56 | 46 | | 5.0-30.0 | 60 | 50 | Note: 1. The lower limit shall apply at the
transition frequencies 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 8.6.3 Test Configuration Test according to clause 7.3conducted emission test setup #### 8.6.4 Test Procedure The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete. #### 8.6.5 Test Results **Pass** The 120V &240V voltage have been tested, and the worst result recorded was report as below: Humidity: Power: AC 120V/60Hz Limit: (CE)FCC PART 15 class B_QP | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1620 | 39.80 | 10.10 | 49.90 | 65.36 | -15.46 | QP | | | 2 | | 0.1620 | 20.50 | 10.10 | 30.60 | 55.36 | -24.76 | AVG | | | 3 | | 0.2020 | 34.20 | 10.09 | 44.29 | 63.53 | -19.24 | QP | | | 4 | | 0.2020 | 18.30 | 10.09 | 28.39 | 53.53 | -25.14 | AVG | | | 5 | | 0.4380 | 29.60 | 10.07 | 39.67 | 57.10 | -17.43 | QP | | | 6 | * | 0.4380 | 22.00 | 10.07 | 32.07 | 47.10 | -15.03 | AVG | | | 7 | | 7.9580 | 18.60 | 10.43 | 29.03 | 60.00 | -30.97 | QP | | | 8 | | 7.9580 | 7.30 | 10.43 | 17.73 | 50.00 | -32.27 | AVG | | | 9 | | 17.6940 | 18.60 | 10.58 | 29.18 | 60.00 | -30.82 | QP | | | 10 | | 17.6940 | 7.40 | 10.58 | 17.98 | 50.00 | -32.02 | AVG | | | 11 | | 24.3500 | 22.90 | 10.70 | 33.60 | 60.00 | -26.40 | QP | | | 12 | | 24.3500 | 10.40 | 10.70 | 21.10 | 50.00 | -28.90 | AVG | | Limit: (CE)FCC PART 15 class B_QP | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBu∀ | dBu∨ | dB | Detector | Comment | | 1 | * | 0.1540 | 40.80 | 10.08 | 50.88 | 65.78 | -14.90 | QP | | | 2 | | 0.1540 | 22.40 | 10.08 | 32.48 | 55.78 | -23.30 | AVG | | | 3 | | 0.2060 | 33.70 | 10.08 | 43.78 | 63.37 | -19.59 | QP | | | 4 | | 0.2060 | 17.00 | 10.08 | 27.08 | 53.37 | -26.29 | AVG | | | 5 | | 0.4340 | 29.10 | 10.10 | 39.20 | 57.18 | -17.98 | QP | | | 6 | | 0.4340 | 19.90 | 10.10 | 30.00 | 47.18 | -17.18 | AVG | | | 7 | | 7.9220 | 20.10 | 10.45 | 30.55 | 60.00 | -29.45 | QP | | | 8 | | 7.9220 | 7.20 | 10.45 | 17.65 | 50.00 | -32.35 | AVG | | | 9 | | 18.9140 | 22.10 | 10.65 | 32.75 | 60.00 | -27.25 | QP | | | 10 | | 18.9140 | 10.80 | 10.65 | 21.45 | 50.00 | -28.55 | AVG | | | 11 | | 24.2900 | 24.40 | 10.54 | 34.94 | 60.00 | -25.06 | QP | | | 12 | | 24.2900 | 12.70 | 10.54 | 23.24 | 50.00 | -26.76 | AVG | | | | | | | | | | | | | Power: AC 120V/60Hz Humidity: 50 % Limit: (CE)FCC PART 15 class B_QP | MHz dBuV dB dBuV dBuV dB Detector Comment 1 * 0.1615 36.30 10.10 46.40 65.39 -18.99 QP 2 0.1615 21.00 10.10 31.10 55.39 -24.29 AVG 3 0.2071 30.70 10.09 40.79 63.32 -22.53 QP 4 0.2071 16.90 10.09 26.99 53.32 -26.33 AVG 5 0.4374 24.10 10.07 34.17 57.11 -22.94 QP 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP 12 24.2703 <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading
Level</th> <th>Correct
Factor</th> <th>Measure-
ment</th> <th>Limit</th> <th>Over</th> <th></th> <th></th> | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |---|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | 2 0.1615 21.00 10.10 31.10 55.39 -24.29 AVG 3 0.2071 30.70 10.09 40.79 63.32 -22.53 QP 4 0.2071 16.90 10.09 26.99 53.32 -26.33 AVG 5 0.4374 24.10 10.07 34.17 57.11 -22.94 QP 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | | | MHz | dBu∨ | dB | dBuV | dBu∀ | dB | Detector | Comment | | 3 0.2071 30.70 10.09 40.79 63.32 -22.53 QP 4 0.2071 16.90 10.09 26.99 53.32 -26.33 AVG 5 0.4374 24.10 10.07 34.17 57.11 -22.94 QP 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 1 | * | 0.1615 | 36.30 | 10.10 | 46.40 | 65.39 | -18.99 | QP | | | 4 0.2071 16.90 10.09 26.99 53.32 -26.33 AVG 5 0.4374 24.10 10.07 34.17 57.11 -22.94 QP 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 2 | | 0.1615 | 21.00 | 10.10 | 31.10 | 55.39 | -24.29 | AVG | | | 5 0.4374 24.10 10.07 34.17 57.11 -22.94 QP 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 3 | | 0.2071 | 30.70 | 10.09 | 40.79 | 63.32 | -22.53 | QP | | | 6 0.4374 13.90 10.07 23.97 47.11 -23.14 AVG 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 4 | | 0.2071 | 16.90 | 10.09 | 26.99 | 53.32 | -26.33 | AVG | | | 7 0.7670 18.70 10.03 28.73 56.00 -27.27 QP 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 5 | | 0.4374 | 24.10 | 10.07 | 34.17 | 57.11 | -22.94 | QP | | | 8 0.7670 2.90 10.03 12.93 46.00 -33.07 AVG 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 6 | | 0.4374 | 13.90 | 10.07 | 23.97 | 47.11 | -23.14 | AVG | | | 9 1.9696 16.90 10.11 27.01 56.00 -28.99 QP
10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG
11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 7 | | 0.7670 | 18.70 | 10.03 | 28.73 | 56.00 | -27.27 | QP | | | 10 1.9696 4.10 10.11 14.21 46.00 -31.79 AVG
11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 8 | | 0.7670 | 2.90 | 10.03 | 12.93 | 46.00 | -33.07 | AVG | | | 11 24.2703 19.40 10.70 30.10 60.00 -29.90 QP | 9 | | 1.9696 | 16.90 | 10.11 | 27.01 | 56.00 | -28.99 | QP | | | | 10 | | 1.9696 | 4.10 | 10.11 | 14.21 | 46.00 | -31.79 | AVG | | | 12 24.2703 7.50 10.70 18.20 50.00 -31.80 AVG | 11 | | 24.2703 | 19.40 | 10.70 | 30.10 | 60.00 | -29.90 | QP | | | | 12 | | 24.2703 | 7.50 | 10.70 | 18.20 | 50.00 | -31.80 | AVG | | Limit: (CE)FCC PART 15 class B_QP | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBu∨ | dB | Detector | Comment | | 1 | * | 0.1540 | 37.50 | 10.08 | 47.58 | 65.78 | -18.20 | QP | | | 2 | | 0.1540 | 20.90 | 10.08 | 30.98 | 55.78 | -24.80 | AVG | | | 3 | | 0.4282 | 25.00 | 10.10 | 35.10 | 57.29 | -22.19 | QP | | | 4 | | 0.4282 | 7.30 | 10.10 | 17.40 | 47.29 | -29.89 | AVG | | | 5 | | 1.1840 | 20.00 | 9.87 | 29.87 | 56.00 | -26.13 | QP | | | 6 | | 1.1840 | 7.90 | 9.87 | 17.77 | 46.00 | -28.23 | AVG | | | 7 | | 3.3104 | 20.50 | 10.09 | 30.59 | 56.00 | -25.41 | QP | | | 8 | | 3.3104 | 8.80 | 10.09 | 18.89 | 46.00 | -27.11 | AVG | | | 9 | | 4.6223 | 19.50 | 10.25 | 29.75 | 56.00 | -26.25 | QP | | | 10 | | 4.6223 | 6.10 | 10.25 | 16.35 | 46.00 | -29.65 | AVG | | | 11 | | 16.9281 | 21.10 | 10.63 | 31.73 | 60.00 | -28.27 | QP | | | 12 | | 16.9281 | 6.40 | 10.63 | 17.03 | 50.00 | -32.97 | AVG | | #### 8.7 ANTENNA APPLICATION #### 8.7.1 Antenna Requirement | Standard | Requirement | | | | | | |--------------------
---|--|--|--|--|--| | FCC CRF Part15.203 | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. | | | | | | For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. | 8.7.2 | Result | |------------|--| | | PASS. | | •
Note: | The EUT has 1 antenna: one an PCB antenna for WIFI 2.4G, the gain is 5.0 dBi Antenna uses a permanently attached antenna which is not replaceable. Not using a standard antenna jack or electrical connector for antenna replacement The antenna has to be professionally installed (please provide method of installation) | | | Which in accordance to section 15.203, please refer to the internal photos. | # 9 PHOTOGRAPHS OF EUT #### **EUT View 1** # **EUT Housing and Board View 1** # **Solder Board-Component View 1** # **Solder Board-Component View 2** # **Solder Board-Component View 3** # **Solder Board-Component View 4** # **Solder Board-Component View 5** #### **Solder Board-Component View 6** Model DataHub1000 with adapter 1 (ABT020120A) Model DataHub1000 with adapter 2 (BSG025W-1202000A) #### Antenna *** End of Report *** # 声明 Statement 1. 本报告无授权批准人签字及"检验报告专用章"无效; This report will be void without authorized signature or special seal for testing report. 2. 未经许可本报告不得部分复制; This report shall not be copied partly without authorization. 3. 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责; The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. 4. 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内部质量控制等目的使用; The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc. 5. 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任, 特别约定、标准或规范中有明确规定的除外; The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility. 6. 对本检测报告若有异议,请于收到报告之日起20日内提出; Objections shall be raised within 20 days from the date receiving the report.